Krebs Cycle

- Most energy from the glucose is still in the pyruvate made in glycolysis
- If oxygen is present:
 - Pyruvate goes into the mitochondria matrix
 - Converted to carbon dioxide
 - This is the Krebs cycle (citric acid cycle)

GGG Pyruvic acid NAD* **Krebs** Cycle G co. NADH • Pyruvate (3 C) CoA Acetyl-CoA Coenzyme A comes in NADH • Reacts to form a 2 NAD+ C molecule FADH Makes NADH FAD (energy storage) \mathbf{C} • Makes CO₂ 4-carbon **GCCCC** compound 5-carbon compound ADP

CO2

CO2

NADH

NAD*

NAD⁺

NADH

Krebs Cycle

- A 6 C compound is then formed – called citric acid
- Citric acid breaks down to form CO₂, ATP, NADH and FADH₂ (energy storage)

Krebs Cycle

• Two pyruvate were formed in glycolysis...

- So that means the Krebs Cycle happens TWICE for each glucose
- Overall yield:
 - 6 CO₂
 - 2 ATP
 - 8 NADH
 - 2 FADH₂

Aerobic vs Anaerobic Respiration

- If oxygen is present, the cell then goes through <u>aerobic respiration</u>
- If oxygen is not present, the cell then goes through <u>anaerobic respiration</u>
- Aerobic respiration is preferred!!!
 - Makes the most energy
 - Produces 24 ATP!
 - Total overall cellular respiration = 36 ATP

Anaerobic Respiration

- Also known as fermentation
- Occurs in the cytoplasm
- Produces a small amount of ATP
- Two main types:
 - Lactic acid fermentation
 - Alcohol fermentation

Lactic Acid Fermentation

- Think of your clothespin lab!
- Pyruvate is turned into lactic acid
- Happens in muscle cells when oxygen level is low
- Made by microorganisms and turned into cheese, milk and yogurt

Alcohol Fermentation

- Happens in yeast and bacteria
- Pyruvate is changed to ethyl alcohol (ethanol)
- Also produces CO₂
 That's the bubbles!